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concentration of singlet molecular oxygen. In a photooxida-
tion experiment, we would expect the oxirane:dioxetane 
ratio to increase with increasing light intensity. 

Another useful experiment suggested by our calculations 
is the photooxidation of a bulky olefin such as 2,2'-biadam-
antylidene in the presence of ethylene. We predict ethylene 
to trap the initially formed peroxirane of 2,2'-biadamantyli-
dene via reaction 3, since the approach of ethylene is steri-
cally feasible and since ethylene is a better reducing agent 
than singlet molecular oxygen. 

Finally, we note that, in the transition state for reaction 
2, the oxygen molecule is electronically polarized (see Fig­
ure 1). In cases for which reactions 1 and 2 are competi­
tive,3-5 the oxirane:dioxetane ratio in the product is expect­
ed to increase with increasing ability of the solvent to stabi­
lize such a polarized oxygen molecule. 
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Flash Photolysis Evidence for Metal-Metal Bond 
Cleavage and Loss of CO in the Photochemistry 
Of[^-C5H5)Mo(CO)3]V 

Sir: 

The photochemistry of metal-metal bonds appears to be 
extensive, although quantitative studies have begun to ap­
pear only recently.2 The results of many reactions can be 
reconciled in terms of initial metal-metal bond cleavage (eq 
l ) . 2 b 

M - M - ^ 2 M (1) 

However, several different types of photoproducts have 
been observed, and it is reasonable to suspect that alternate 
photopathways may exist. For example, the dimer, [(j;5-
C5H5)Mo(CO)3J2 ,3 undergoes net light-induced substitu­
tion, disproportionation, and oxidation4"7 with relatively 
high efficiencies.8'9 

In the electronic spectrum of [(775-C5H5)Mo(CO)3J2 

there are two well-defined absorption bands at 387 (e 
21,000) and 510 nm (« 187O).10 The band at 387 nm is 
probably the a —• <x* transition of the metal-metal bond by 
analogy with the assignments made by Levenson, Gray, and 
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Figure 1. Comparison of the difference spectrum obtained by visible (X 
>460 nm) flash photolysis of 2 X 10"5 M[(17'-C5H5)Mo(CO)3J2 in cy-
clohexane: (a) actual spectrum (2.5-cm pathlength) of [(T)5-C5HJ)MO-
(CO)3J2 taken before flash photolysis, (b) difference spectrum for the 
fast process (' = 0.05-2 msec) after being corrected for the slow pro­
cess, and (c) difference spectrum for the slow process (' = 2-50 msec). 

Ceasar for the intense, near-uv bands of Mn2(CO) 10, 
MnRe(CO)io, and Re2(CO)I0 .1 ' The relatively low-intensi­
ty band at 510 nm is probably a d -» d transition, since the 
spectra of related compounds without metal-metal bonds 
(e.g., (1,5.CsHs)Mo(CO)3Br, (775-C5H5)Mo(CO)2Br2-)8 

are qualitatively similar in the visible (e <~500). Our work 
has shown that either uv (366 nm) or visible (546 nm) pho­
tolysis of [(775-C5H5)Mo(CO)3I2 in T H F (tetrahydrofuran) 
can give efficient substitution, disproportionation, and oxi­
dation reactions.8,9 

By applying conventional flash photolysis techniques to 
solutions of [ ( T 7 5 - C 5 H 5 ) M O ( C O ) 3 ] 2 in cyclohexane, THF, 
and acetonitrile, we find direct evidence for the appearance 
of two distinct intermediates, immediately following photol­
ysis. The intermediates subsequently react by independent 
thermal processes, which regenerate [(775-C5H5)Mo(CO)3I2 

quantitatively.12 The intermediates are both present at the 
earliest experimental observation times (/ > 50 ixsec), and 
both appear following either uv or visible photolysis.'3 

One of the following thermal processes is ~50-100 times 
faster than the other, which has allowed us to resolve the 
difference spectra between regenerated [(7?5-C5H5)Mo-
(CO)3J2 and both intermediates (Figure 1). For the fast 
process (t ~0.05-2 msec), the difference spectrum (Figure 
lb) closely matches the intense uv absorption band of [(77s-
C 5 H 5 )Mo(COh] 2 (Figure la) suggesting that in the inter­
mediate, the metal-metal bond has been lost. For the slower 
process (t ~ 2 - 5 0 msec), the difference spectrum (Figure 
1 c) shows that the intermediate absorbs strongly in the a -* 
a* (Mo-Mo) spectral region, since there is an isosbestic 
point close to the UV Amax for [(775-C5H5)Mo(CO)3]2.M 
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For the fast process, the difference spectrum suggests 
that the intermediate is relatively nonabsorbing in the near-
uv region which allows us to estimate the second-order rate 
constants (at 20 ± 2°): it, = (2 ± 1) X 109 (THF), (3 ± 1) 
X 109 (acetonitrile), and (5 ± 1) X 109 M " 1 sec"1 (cyclo-
hexane). The values approach the estimated diffusion-con­
trolled limits in the three solvents.15 In THF, the rate of the 
fast process is unaffected by added inert electrolyte (N(n-
C4H9)+PF6~), ruling out reactions involving ions. The only 
reasonable interpretation is that light-induced cleavage of 
the Mo-Mo bond has occurred, followed by recombination 
of the monomeric fragments (eq 2). 

[(7,5-C5H5)Mo(CO)3J2 - ^ 2 ( T , 5 - C 5 H 5 ) M O ( C O ) 3 ^ 

[(7,5-C5H5)Mo(CO)3J2 (2) 

This interpretation is consistent with: (1) the loss of absorb-
ance in the a —* a* (Mo-Mo) region, (2) the nearly diffu­
sion-controlled rates in the range found for radical recombi­
nation reactions in solution,16 and (3) the chemical evidence 
obtained in other work for radical byproducts.17 

For the slow process, an estimate of the maximum sec­
ond-order rate constant can be made (at 20 ± 2°), kj = 3 
X 107 (acetonitrile), 5 X 107 (THF), and 1 X 108 A/"1 

sec - 1 (cyclohexane), and a lower limit can be set at one-
tenth of these values. For purposes of comparison, the value 
for the recapture of CO by Cr(CO)5 in cyclohexane has 
been reported to be (3 ± 1) X 106 M~l sec"1 .18 In THF, 
the slow process is also unaffected by added inert electro­
lyte, again ruling out an ionic reaction. The slow process ap­
pears to involve recombination with CO (eq 3),19 

( T , 5 - C 5 H 5 ) 2 M O 2 ( C O ) 5 + CO 

[(7,5-C5H5)Mo(CO)3I2 (3) 

as shown by: (1) retention of the strong absorptivity in the 
uv, which implies the presence of a Mo-Mo bond in the in­
termediate, (2) the second-order kinetics with a rate con­
stant in the range reported for the recapture of CO by 
Cr(CO)5 , and (3) the CO substitution behavior found for 
light-induced reactions between [ ( T , 5 - C 5 H 5 ) M O ( C O ) 3 ] 2 and 
neutral phosphine and phosphite ligands.49 

The fact that either uv or visible photolysis gives both 
metal-metal bond cleavage and loss of CO implies that the 
two intermediates have a common origin, but it is not clear 
that the intermediate from which CO has been lost is a pri­
mary photoproduct. Metal-metal bond cleavage is expected 
following uv excitation into the a —- a* (Mo-Mo) band 
since the excited state should be antibonding with regard to 
the Mo-Mo bond, and, when thermally equilibrated, most 
likely consists of (7,5-C5H5)Mo(CO)3 fragments in a solvent 
cage. Regardless of the detailed origin of the visible band, 
visible excitation could also lead to metal-metal bond cleav­
age. The energy of the thermally equilibrated a —- a* excit­
ed state can be estimated as <40 kcal/mol, since the metal-
metal bond strength of [ ( T , 5 - C 5 H 5 ) Mo(CO)3J2 in organic 
solvents appears to be significantly less than 40 kcal/mol.9 

Photolysis in the visible band (X >460 nm)12 is sufficiently 
energetic to populate the thermally equilibrated a -*• <r* 
state. If there is an intersection between the a —* a* and d 
—*• d excited state surfaces, and if internal conversion and/ 
or intersystem crossing efficiencies are high, efficient 
metal-metal bond cleavage is expected to occur, perhaps in 
competition with loss of CO. 
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Light Intensity Effects on Ketone Photochemistry 
in Solution as a Consequence of Radical Quenching 
and Radical Chain Processes1 

Sir: 

We find that light intensity is a critical reaction variable 
in the photochemistry of cyclohexadienone (1) in 2-propa-
nol (IPA) and other solvents and that intensity effects are 
related to unusual quenching behavior in this model sys­
tem.2 The fact that the role of light intensity (/°) has been 
largely ignored by photochemists3 may prove to have been a 
serious oversight, as demonstrated by the following observa­
tions. 

The main products from irradiation of 1 in IPA are p-
cresol (2), cyclopertenone ether (3), chloroform, and ace­
tone. Compound 3 undergoes facile isomerization in the 
dark to 4 which is the material actually subjected to GLPC 
analysis. The ratio of 2 to 3 in preparative runs varied con­
siderably using different light sources emitting over ap­
proximately the same wavelength range.2J Difficulty was 
also experienced in reproducing quantum yield measure-
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CH, 
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